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SUMMARY

Based on the Euler–Maclaurin formula, a compact finite difference scheme is employed to solve a
two-point boundary value problem for studying the secondary instabilities of the boundary layer flow.
The parametric resonance of unstable waves is explored using the Floquet method. For both subhar-
monic and fundamental modes, two additional Fourier terms are added in the analysis, and the spatial
growth rates are determined. The effect of suction mechanism on the secondary instability waves is also
investigated. From numerical experiments, it is shown that the proposed numerical scheme is very
promising. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well-known that the most important technique with which to postpone the occurrence of
turbulent flow, which plays an important role in the viscous drag for a moving vehicle [1], is
laminar flow control (LFC) in the form of suction, cooling, favorable pressure gradients and
compliant walls, etc. Although the effects of these mechanisms on the primary disturbances
have been studied intensively for the past few years, the effects of the secondary disturbances
occurring while the amplitudes of the TS waves exceed certain threshold values have not yet
been fully explored.

The pattern of the three-dimensional structure of secondary disturbances has two different
types of L shape aligned in the spanwise. The first one was found by Klebanoff and Tidstrom
[2] and is referred to as the K-type of breakdown. It is characterized by spanwise alternating
peaks and valleys, or regions of enhanced and reduced wave amplitude and an associated
system of streamwise vortices. Three-dimensional wave components have the same frequency
as the TS wave component, so the route to transition is also referred to as the fundamental
breakdown or fundamental instability. The second type was observed by Kachanov and
Levchenko [3], and Thomas and Saric [4]. This type is characterized by a staggered pattern of
L vortices, where the streamwise wavelength is twice that of the TS wave, and is usually
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referred to as subharmonic instability or the H-type of breakdown. Both K- and H-types of
breakdown are, in general, called secondary instabilities. It has been shown in previous
experiments [5] that the staggered L-shaped vortices occur at low amplitudes of TS wave, while
the aligned peak–valley splitting vortices appears at higher amplitudes.

Early theoretical studies of the secondary instability rely on weakly non-linear models which
are based on the interaction of some relevant primary instability modes. The results thus
obtained are rarely comparable with experimental ones. The intrinsic drawback for weakly
non-linear theories is that they are dominated by the characteristics of the long (viscous) time
scale of the linear theory. Thus, the effects developed by the fast (inertia) time scale can not
be described clearly. With the advent of the high speed computer, direct numerical simulation
becomes the most direct and useful tool with which to illustrate the transition process. Spalart
and Yang [6] introduced three-dimensional random disturbances to predict the spanwise
structure. Kleizer and Laurien [7] modeled the subharmonic and fundamental types of
instabilities. Although direct numerical simulation (DNS) confirms many experimental obser-
vations and theoretical predictions, it is extremely time consuming and complicated. An
alternative is based on the fact that the secondary instability modes arise from a parametric
instability of the streamwise periodic flow created by finite amplitude TS waves. Due to the
fact that the governing equations have periodic coefficients, the Floquet method is easily
adopted to analyze the system. Herbert [8,9] employed this parametric approach to study the
subharmonic and fundamental modes of transition. The quantitative agreement with the
experiments of Klebanoff on peak–valley splitting and those of Kachanov and Levchenko on
staggered peak–valley is very striking. Herbert [10] also reviewed the secondary instability of
incompressible flow.

In Floquet’s theory, the number of the governing equations increases with increasing Fourier
terms, which are used to describe the variables of the secondary instabilities. Therefore, the
analyses of the secondary instability such as that of Herbert [8,9], Herbert and Bertolotti [11],
EI-Hady [12], and Masad and Nayfeh [13] are almost based on the minimum number of terms
to avoid the complexity in deriving and solving the governing equations. Furthermore, in order
to alleviate the non-linear characteristics of the spatial stability problem by itself, the temporal
stability problem is usually solved and the spatial growth rate of the disturbance is approxi-
mated by a conversion formula proposed by Bertolotti [14].

In order to understand the effect of the truncated terms on the secondary instability, this
research uses four and five Fourier terms in the analysis of the subharmonic instability and in
the investigation of the fundamental instability, respectively. Furthermore, the spatial stability
problem is directly solved for the growth rate of the secondary instabilities and the suction
effect on the secondary instabilities is studied. In general, due to numerical stiffness of both
primary and secondary stability problems, a converged solution is not easy to obtain.
Although there are some well-known caned codes such as SUPORT [15] and DB2PFD [16]
which were developed especially for the two-point boundary value problems, the efforts to
secure the converged solution require special numerical techniques such as fined-grid or very
close initial conditions. To cope with this trauma, a compact finite difference numerical scheme
is proposed in this research.

2. MATHEMATICAL FORMULATION

The Cartesian co-ordinates, x, y and z are used to represent the streamwise, transverse and
spanwise directions, respectively. In stability analysis, each flow variable qT,(uT, 6T, wT, pT) is
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expressed by two components as qT=qb+q, where q represents the secondary instability
disturbance to the basic state qb, which is the sum of both mean flow and TS wave. The
secondary instability disturbance can be obtained from

qb=qm(y)+
Arms


2
[qp(y) eiu+ q̄p(y) e− iu], where u=ax+vt, (1)

where qm stands for the mean flow variables that can be determined from the solution of the
2D laminar boundary layer equations, qp stands for the eigenfunction satisfying the Orr–Som-
merfeld equation and, a and v represent the wave number and the frequency of TS wave,
respectively. Note that

1. these functions are normalized such that the maximum root-mean-square of the streamwise
velocity component, up, has a specified value denoted by Arms and Arms which are assumed
locally constant, i.e. the amplitude is assumed to be very small in comparison with the
disturbances.

2. Moreover, at finite amplitude Arms the non-linear distortion of the primary disturbance qp

is also neglected. This assumption has been justified by the weak non-linear distortion, even
at an amplitude of 10% [10].

Substituting Equation (1) into the Navier–Stoke equations, discarding the terms satisfied by
qb, and eliminating the quadratic terms of q, a three-dimensional unsteady partial differential
equation for disturbance quantities q(=u, 6, p and w) is then obtained:
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where the Reynolds number Re=U�* d*/n*, and distances, velocities, time and pressure are
non-dimensionalized by d=
n*x*/U�* , U�* , d*/U�* , and r*U*�2, respectively. The boundary
conditions are given by

u=6=w=0 at y=0, (6)

and

u, 6, p, w�0, as y��. (7)

Equations (2)–(5) are linear, and their coefficients are independent of z and periodic in both
the t- and x-direction. Therefore, based upon the Floquet theory, the solution is written as:

(u, 6, p)=egx+st(h1, h3, h4+complex conjugate) cos bz, (8)

w=egx+st(h5+complex conjugate) sin (9)

where g and s are called the characteristic exponents and b represents the spanwise wave
number. Since hk (k=1, 3, 4, 5) is periodic in x and t, we express hk as
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hk= %
�

n= −�
zk

n/2(y) einu/2,
!n=odd;

n=even;
for subharmonic instability.
for fundamental instability.

(10)

It is obvious that the accuracy of the parametric resonance wave solution depends on the
numbers of Fourier terms chosen, and one additional term will result in one more set of
Equations (2)–(5). Consequently, in order to reduce the complexity and to save some CPU
time, most contemporary researches are limited to a minimum of two Fourier terms for
subharmonic instability and three Fourier terms for fundamental instability [17]. To under-
stand the effect of truncation error in the analysis of the secondary instability, two additional
terms are added to this study. By so doing, the disturbances q for subharmonic instability can
be written as

(u, du/dy, 6, p)=egx+st[zk
1/2 eiu/2+zk

−1/2 e− iu/2+zk
3/2 ei3u/2+zk

−3/2 e− i3u/2] cos bz,

k=1, …, 4, (11)

(w, dw/dy)=egx+st[zk
1/2 eiu/2+zk

−1/2 e− iu/2+zk
3/2 ei3u/2+zk

−3/2 e− i3u/2] sin bz, k=5, 6,
(12)

and the disturbances for fundamental instability are

(u, du/dy, 6, p)=egx+st[zk
0+zk

1 eiu+zk
−1 e− iu+zk

2 ei2u+zk
−2 e− i2u] cos bz, k=1, …, 4,

(13)

(w, dw/dy)=egx+st[zk
0+zk

1 eiu+zk
−1 e− iu+zk

2 ei2u+zk
−2 e− i2u] sin bz, k=5, 6. (14)

Substituting Equations (11) and (12) into (2)–(5), and equating the coefficients of eiu/2 and
ei3u/2 on both sides, the resulting equations can be written as a system of 12 coupled first-order
differential equations in terms of zn

1/2 and zn
3/2:

dzn
1/2

dy
= %

6

k=1

Fnkzk
1/2+F( nkzk

−1/2+Gnkzk
3/2, n=1, …, 6, (15)
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6
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3/2, n=1, …, 6. (16)

The coefficients Fnk, F( nk, Gnk, F. nk and G. nk are given in Appendix A, where z( k is the complex
conjugate of zk.

The boundary conditions are then transformed into

zn
1/2=zn

3/2=0, at y=0, n=1, 3, 5, (17)

zn
1/2 and zn

3/2�0, as y��, n=1, …, 6. (18)

Likewise, for the fundamental instability, 18 coupled first-order differential equations in terms
of variables zn

0, zn
1 and zn

2 are obtained. They are given as follows:
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6

k=1
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2, n=1, …, 6, (20)

dzn
2
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6
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2, n=1, …, 6, (21)
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where the coefficients, H0 nk, F0 nk, F(0 nk, Hnk, Fnk, Gnk,F. nk, G. nk, are given in Appendix B. The
boundary conditions read

zn
0=zn

1=zn
2=0, at y=0, n=1, 3, 5, (22)

zn
0, zn

1 and zn
2�0, n=1, 6, as y��. (23)

2.1. Mean flow

For the flow over a two-dimensional curved body, the non-dimensional boundary layer
equations take the form of

(um

(x
+
(6m
(y

=0 (24)

um

(um

(x
+6m

(um

(y
=ue

due

dx
+
(2um

(y2 . (25)

The boundary conditions are given below,

6m=6w, um=0, at y=0, and um=ue(x) as y��, (26)

where!(x, y)= (x*, y*
ReL)/L*, (um, 6m)= (um* , 6m* 
ReL)/um�*
ReL=r�* um�* L*/m�* .

Variables with subscripts represent the quantities of the free stream flow: ue(x) and 6w denotes
inviscid solution and the normal velocity at wall, respectively.

Applying the Görtler transformation shown below

j(x)=
& x

0

ue dx, h(x, y)=
ue(x)y


2j
,

the governing equations become

2jFj+Vh+F=0, (27)

2jFFj+VFh−Fhh+b(F2−1)=0 (28)

where

F(j, h)=
um(x, y)

ue(x)
, V(j, h)=


2j

ue

(6w(j)+
2jhxF).

The parameter b=2j/ue due/dj represents the pressure gradient along the surface.
The boundary conditions become

F=0, V=

2j

ue

Vw(j) at y=0, and F=1 as y��. (29)

We now consider the flow over a flat plate. Let V be constant at y=0, meaning that the
suction Vw(j) is distributed as a function of the downstream.

2.2. TS wa6es (primary instability)

The procedure for deriving the governing equations of the primary instability problem is
very similar to that of the secondary instability problems. A system of equations for the 2D TS
waves is
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dzn

dy
= %

4
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Fnm(y, a, v, Re)zm, n=1,…, 4, (30)

where [z1, z2, z3, z4]= [up, dup/dy, 6p, pp] and
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Ã
Ã

Ã

Ç

É

(31)

where V=v−aum. Equation (30) is in fact the well-known Orr–Sommerfeld equation. Since
the y-derivative of the mean flow velocity is zero outside the boundary layer thickness, the
asymptotic boundary conditions are derived and expressed as

%
4

m=1

Anmzm=0 at y=0, and %
4

m=1

Bnmzm=0 at y=ymax, for n=1, 2, (32)

where the ymax is specified with the magnitude equal to or larger than the boundary layer
thickness, and

[A ]2×4=
�1

0
0
0

0
1

0
0
n

, [B ]2×4=
� 0

−VRe/a
− i

− i
Vc/a
−Vc/a
−
Vc

Re
Re
n

where Vc=a2− iVRe.

3. NUMERICAL METHOD

With the homogenous boundary conditions, the homogeneous system of Equations (15)–(18)
or (19)–(23) is basically an eigenvalue problem. The system has a non-trivial solution for
certain combinations of s, g, b, v, Arms, um and Re, satisfying a dispersion relation,

g=g(s, b, v, Arms, um, Re). (33)

For temporal stability, we set g=0, so that sr gives the growth rate and si represents a
frequency shift from v/2. For spatial stability, we set s=0, so that gr gives the growth rate
and gi represents a wave number shift from a/2. For synchronized secondary instability waves,
usually called tuned mode, we have si=0 and gi=0. Since the growth rate of the tuned mode
is usually larger than that of the detuned mode, only the tuned mode is considered in the
present work.

The governing equations of both primary and secondary stability problems become more
and more stiff as Re is increased. A famed SUPORT code [15] was developed to deal with the
stiffness problem through Gram–Schmidt renormalization techniques during the integration,
in order to determine both compressible and incompressible stability problems. However, as
the problem becomes stiff, the fine grid requires a tremendous amount of CPU time owing to
the renormalization of the eigenfunctions. Recently, a subroutine DB2PFD of IMSL using the
second-order finite differences [16] has been developed for a non-linear two-point boundary
value problem. The code has been used by Masad and Nayfeh [13] in dealing with the
instability problem. DB2PFD is accurate and considerably faster than SUPORT, especially at
low Reynolds number. However, when the problem becomes stiffer, DB2PFD usually pro-
duces a diverged message even with fine grid used, or may even obtain a wrong solution. Wu
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[18] has applied the Euler–Maclaurin formula and used the finite difference method to analyze
the stability of a compressible mixing layer numerically. The solutions can attain to the
fourth-order accuracy in the y-direction, which offers much more accuracy for the first- and
second-derivatives of the mean flow which is required for the stability analysis. Therefore, an
attempt is made to extend this numerical scheme in order to solve the secondary instability
problem, which is much more complex than the primary instability problem. Certainly, the
mean flow and the primary stability can also be solved based on this scheme. For simplicity,
only the numerical procedure for solving the subharmonic instability is described here.

The prime hub of the scheme is based on the application of the Euler–Maclaurin formula
to the system, such as

(cb j−cb j−1)−
hj

2
(cb %j+cb ¦j−1)+

hj
2

12
(cb ¦j −c¦j−1)+O(hj

5)=0, (34)

where j represents the grid point index in the y-direction. cb acts as a vector of 12 components,
i.e. (c1, …, c6, c7, …, c12)= (z1

1/2, …, z6
1/2, z1

3/2, …, z6
3/2), which stand for the variables of the

system. cb %j represents the first derivative of cb with respect to y. cb ¦ is determined by taking the
derivative of Equations (15) and (16) directly. They are given by

d2zn
1/2

dy2 = %
6

k=1

fnkzk
1/2+ f( nkz( k

1/2+gnkzk
3/2+ ḡnkz( k

3/2, (35)

d2zn
3/2

dy2 = %
6

k=1

f. nkzk
1/2+ f(. nkz( k

1/2+ ĝnkzk
3/2. (36)

for the subharmonic mode, where

fnk=
dFnk

dy
+ %

6

l=1

[FnlFlm+F( nlF( lm+GnlF. lm ],

f( nk=
dF( nk

dy
+ %

6

l=1

[FnlF( lm+F( nlF( lm ],

gnk=
dGnk

dy
+ %

6

l=1

[FnlGlm+GnlG. lm ],

ḡnk= %
6

l=1

F( nlG( lm, f. nk=
dF. nk

dy
+ %

6

l=1

[F. nlFlm+G. nlF. lm ],

f(. nk= %
6

l=1

F. nlF( lm, ĝnk=
dG. nk

dy
+ %

6

l=1

[F. nlGlm+G. nlGlm ].

The system of the equations has to be entered into another system of equations in terms of real
variables prior to numerical calculations. Thus, with some manipulation, the transformed
real-variable equations of the system become
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where cn=cn
r + icn

i . Similarly, Equations (35) and (36) are expressed in a real-variable system of equations as
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11 g1 r
11 · · · g1 i

16 g1 r
16

······
···

···
···

···
···

···
···

···
···

d2c i
7

dy2

c r
12f0 r61+ f(0 r61 −f0 i61+ f(0 i61 · · · f0 r66+ f(0 r66 −f0 i66+ f(0 i66 g1 r

61 −g1 i
61 · · · g1 r

66 −g0 i
66··· c i

12f0 i61+ f(0 i61 f0 r61− f(0 r61 · · · f0 i66+ f(0 i66 f0 r66− f(0 r66 g1 i
61 g1 r

61 · · · g1 i
66 g1 r

66d2c r
12

dy2

d2c i
12

dy2

= [Lnk ]24 � 24{f� }T
24*]. (38)
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In the calculation ‘nmax’ grid points in the y-direction are generated. The first point j=1
represents the location at the wall. The last point j=nmax is located outside the boundary layer.
Substituting the vector cb n, Equations (37) and (38) into (34), the system of the equations can
be expressed in a matrix form,

[D ]jfb j−1+ [E ]jfb j=0a , 25 j5nmax, (39)

where

[D ]j= − [I ]−
hj

2
[G]j−1−

hj
2

12
[L ]j−1,

[E ]j= [I ]−
hj

2
[G]j+

hj
2

12
[L ]j.

In Equation (39) there are 24*(nmax−1) equations for 24*nmax unknown variables. For a
system which can be solved, 24 additional equations must be derived from the boundary
conditions. From the boundary condition (17) at the wall, there are 12 equations:

[A ]12*24{fb }=0, (40)

where the elements of matrix [A ] are zero except that elements A1,1=A2,2=A3,5=A4,6=
A5,9=A6,10=A7,13=A8,14=A9,17=A10,18=A11,21=A12,22=1.

The boundary condition (18) at j=nmax gives the other 12 equations. Since all the
derivatives of mean flow are zero at or outside the boundary layer, the asymptotic boundary
conditions can be derived in a matrix form�[B ]6 � 12

[0]6 � 12

[0]6 � 12

[B ]6 � 12

n
{fb }24 � 1={0}, (41)

where the non-zero element of matrix [B ] is displayed in Appendix C.
With some manipulation, Equations (39)–(41) are combined and rewritten in a block

tridiagonal system. The Newton–Raphson scheme is employed for eigenvalue searching. The
procedure for obtaining the algebraic system of equations for the fundamental mode is the
same, except 12 additional variables are used at each grid point.

4. VERIFICATION OF THE CODE

The mean flow, TS wave and the secondary instability are all calculated based on the proposed
numerical scheme. The compact finite difference numerical scheme has second-order accuracy
when the first two terms of (34) are used. It benefits without deriving and solving Equations
(35) and (36), but suffers from a loss of accuracy of the numerical solution. The symbols 2ND
and 4TH denote the numerical code using two terms of (34) and three other terms. All the
computations were done using a 486 personal computer.

4.1. Mean flow and TS wa6es

In the calculation of the mean flow, the solutions obtained from 2ND and 4TH are
compared and the expenditure of CPU time is shown. The Blasius profile is chosen. Let
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hmax=6.0. Firstly, for different meshpoints N, the y-derivative of velocity profile, (um/(h �h=0

is computed. Since no exact solution of (um/(h �h=0 at the wall can be found, (um/(h �h=0

obtained at N=1601 is presumed to be the exact numerical solution, which is (um/(h �h=0=
0.46960049176.

Surprisingly, the result obtained by 4TH at N=41 is even closer to the exact solution than
that determined by 2ND at N=801, and the CPU time consumed by both codes shows less
difference at each respective N (Table I). As mentioned earlier, to increase the accuracy of
solutions to the stability problem, highly accurate distributions of the first and second
y-derivative of the mean flow velocity are required. Obviously, from Table I, 4TH proves to
be a highly efficient numerical method to determine the mean flow and for both first and
second derivatives of the velocity profile with respect to y.

To compare the difference in solving the TS wave problem with both codes, the Blasius
profile was chosen as the mean flow, with the Reynolds number Red 1

=100 000 (where d1 is the

Table I. (um/(h �h=0 for various values of N

CPUN 4TH CPU2ND

0.46960055514 0%%:9441 0.46943275711 0%%:88
1%%:370.469600493371%%:270.46957363752101
2%%:680.469600491770.46959881318 2%%:51401

0.46960007211 6%%:26 0.46960049176 6%%:86801

Table II. a obtained from 2ND for various values of N

N �a−ae�/aeCPUa

41 4%%:450.572474 � 10−1−i0.516940 � 10−2 0.28 � 10−1

101 0.42 � 10−20.560032 � 10−1−i0.374870 � 10−2 8%%:57
0.10 � 10−2201 0.558301 � 10−1−i0.362768 � 10−2 14%%:72

27%%:24 0.25 � 10−30.557880 � 10−1−i0.359981 � 10−2401
52%%:460.557775 � 10−1−i0.359298 � 10−2 0.64 � 10−4801

Table III. a obtained from 4TH for various values of N

�a−ae�/aeN a CPU

41 0.46 � 10−30.558044 � 10−1−i0.352327 � 10−2 5%%:44
0.90 � 10−59%%:990.557747 � 10−1−i0.358895 � 10−2101

201 0.557742 � 10−1−i0.359061 � 10−2 17%%:24 0.40 � 10−6

0.80 � 10−831%%:480.557741 � 10−1−i0.359071 � 10−2401
060%%:420.557741 � 10−1−i0.359072 � 10−2801
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Figure 1. Comparison of subharmonic growth rates between two and four terms of the Fourier series for TS waves
a=0.20338, v=0.075161.

displacement thickness), v=0.008, and the initial guess of a=0.462609 � 10−1− i0.75200 �
10−2. Similarly, at N=1601, ae=0.557741 � 10−1− i0.3.5902 � 10−2 obtained from 4TH
are assumed as the exact solution for this flow condition.

From Tables II and III, at each grid point the CPU time consumed by 4TH and 2ND
shows little difference, but solutions obtained by 4TH are much closer to the numerical
exact solution with less grid point, which can be observed between 4TH at N=101 and
2ND at N=801. The error of mean flow solutions from 2ND at N=41 causes large error
of stability solution shown in Table II.

The solution obtained using SUPORT with N=101 is ae=0.557741 � 10−1−
i0.359073 � 10−2. The CPU time is 5%:49%%:77. Similarly, the solution obtained by DB2PFD
with N=101 is ae= 0.557741 � 10−1− i0.359073 � 10−2. The CPU time is 5%:18%%:07. At
N=401, CPU times used by SUPORT and DB2PFD are around tenfold more than 4TH.

From this comparison, it shows that the scheme developed in the study is highly reliable.
The CPU time used by SUPORT or DB2PFD increases rapidly as Reynolds number
increases because of a much stiffer problem; moreover, the DB2PFD usually shows a
diverged message at higher Reynolds number. However, the proposed scheme performs
very well, with no apparent increase of CPU time as Reynolds number increases. The
steadiness of the numerical scheme, which is rarely affected by the Reynolds number, might
be attributed to its backward finite difference [19] while applying the Euler–Maclaurin
formula.
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ANALYSIS OF THE INCOMPRESSIBLE BOUNDARY FLOW LAYER 823

4.2. Subharmonic mode

Figure 1 shows the distribution of the temporal growth rate s versus Arms for Re=606 and
b=0.2. The results of two- and four-Fourier term analyses are compared with Santo’s work
[17], in which the growth rate was computed using the spectral collocation techniques. In the
figure, we found that the difference between the results of two and four terms becomes evident
when Arms\0.02. The error was 21.8% at Arms=0.06 and 36% at Arms=0.1. Furthermore, the
results using four terms show an excellent agreement with Santo’s results. Therefore, unless the
results were specified by something else, the subharmonic modes in the work are determined
using four Fourier terms.

To understand the accuracy of the transformation, g=s/Cph, proposed by Bertolottii [14],
the distributions of both temporal and spatial growth rates versus Arms were plotted in Figure
2. The figure shows that the transformed growth rate agrees well with the calculated one when
ArmsB0.04. However, substantial differences appeared for an increasing Arms. Therefore, the
discrepancy between both will be larger than the results shown in Figure 2 if the temporal
growth rate is calculated using two Fourier terms.

4.3. Fundamental mode

At Re=606 and b=0.2 the distribution of the temporal growth rate of the fundamental
wave against Arms is plotted in Figure 3. In the figure we found that the term-truncated effect

Figure 2. Comparison of subharmonic growth rates between the calculated values and values from transformation
g=s/Cph.
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Figure 3. Comparison of fundamental growth rates between three and five terms of the Fourier series for TS wave
a=0.20338, v=0.075161.

on the growth rates is not pronounced for ArmsB0.02. The error becomes clear when
Arms\0.02. The error is about 11.3% at Arms=0.1. The discrepancy of the present results
compared with Santo’s is attributed to the four Fourier terms that he used.

The distribution of the spatial growth rate against the wave number for three different Arms

are plotted in Figure 4. The results are compared with Masad and Nayfeh [13], who used three
Fourier terms and adopted DB2PFD to solve the fundamental stability problem. Similar to
the temporal stability problem shown in Figure 3, the rare difference between the results
obtained using three and five Fourier terms, as shown in Figure 3, is expected at small Arms.
Moreover, for Arms=0.025 at high spanwise numbers, the growth rate determined using five
terms is larger than that obtained using three terms. Also, the present results using three
Fourier terms agree well with those of Masad and Nayfeh.

Herbert [10] stated the reasonable assumption that non-linear distortion of the primary
disturbance shape mode could be neglected even at Arms=10%. However, the current
numerical results available were all obtained at a range of amplitude Arms no more than 0.01
[12,13]. They have shown that under this amplitude range, the minimum Fourier terms are
sufficient for the analysis of the secondary instability. Certainly, our results also agree with
their conclusions as given in Figures 1, 3 and 4. The secondary instability for amplitudes
higher than this range has not been described in contemporary literature, possibly because if
more Fourier terms were chosen the calculation of the growth rate would become more
complex and difficult.
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5. RESULTS AND DISCUSSION

5.1. Mean flow

The velocity distributions um of the 2D boundary layer flow for different suctions V=0.05,
0.0, −0.5 and −0.1, are shown in Figure 5. As the suction is increased, the velocities at a
region near the wall are apparently increased. This phenomenon illustrates that with suction
mechanism, the increasing kinetic energy of the fluid particles near wall would prevent the flow
from separation, and the flow could be more stable downstream.

5.2. TS wa6e

The neutral curves for four different suctions are displayed in Figure 6. At a fixed
disturbance frequency there are two points intersected by the neutral curve. Between these two
points is the region of unstable waves. The figure illustrates that the suction mechanism causes
a higher critical Reynolds number at which unstable TS waves start to grow, and the delayed
occurrence of the unstable waves leads to the late occurrence of turbulence. Interestingly,
suction affects the first neutral point rather than the second neutral point, which is apparently
idle for suction.

5.3. Secondary instabilities

The distributions of spatial growth rates of both the subharmonic and the fundamental
modes versus the spanwise wave number corresponding to Arms=0.01, 0.02 and 0.04,

Figure 4. Comparison of fundamental growth rates between three terms of the Fourier series for TS wave
F=90 � 10−6 and Rn=600.
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Figure 5. Distribution of mean flow u-component for different suctions.

respectively, are presented in Figures 7–9. The small growth rate at larger suction illustrates
that the suction mechanism is capable of stabilizing the secondary instability. Furthermore, the
range of the spanwise wave number of secondary instability is narrowed as the suction is
increased. Since the subharmonic mode generally has a larger growth rate than the fundamen-
tal mode for these three different Arms, the H-type of breakdown would be more likely to occur
than the K-type of breakdown in the process of developing into turbulent flow.

At Re=600 and F=90 � 10−6, the maximum growth rate of both the subharmonic and the
fundamental modes was investigated among, g–B at a fixed Arms, and the variations of the
maximum growth rate against Arms for four different values of V are shown in the Figure 10.
In each case, the maximum growth rate of the subharmonic mode is larger than that of the
fundamental mode for all Arms and the difference between them is evident at small Arms.
Furthermore, the maximum growth rate of the subharmonic mode varies almost linearly with
Arms. This also applies to the fundamental mode, while Arms\0.025.

At a fixed Arms the effects of suction on the maximum growth rate of both the subharmonic
and the fundamental modes are calculated and shown in Figure 11. Again, it is shown that the
applied suction produces lower maximum growth rates of the secondary instabilities. The
K-type of breakdown with VB−0.075 is unlikely to appear if ArmsB0.01. Moreover, the
maximum growth rate of both secondary instabilities decreases almost linearly as the suction
is increased. For the same flow conditions as above, the spanwise wave numbers of the
maximum growth rates against the suction for different Arms are presented in Figure 12. The
spanwise wave number at the maximum growth rate of the subharmonic mode shows little
change with the suction, and the fundamental mode also shows the same tendency, except at
Arms=0.01. Meanwhile, the figure illustrates that a larger Arms will cause the secondary
instabilities with maximum growth rate to occur at a high spanwise wave numbers.
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6. CONCLUSION

A highly efficient finite difference scheme is proposed to solve the two-point boundary value
problem arising from boundary layer equations, Orr–Sommerfeld equations and the secondary
instability equations. With this numerical scheme, the stiffness of the present problems caused
by the Reynolds number is easily tackled.

Two additional Fourier terms, other than those used by other researchers, are employed in
the calculation of both subharmonic and fundamental waves. The results illustrate that as the
TS wave amplitude increases, additional terms should be considered in the analysis of
parametric resonant waves. In particular, for the subharmonic wave, the resulting difference
between using four and two Fourier terms has 36% error for Arms=10%. The accuracy of the
numerical results in the analysis of the secondary instability is achieved for the price of
obtaining more complex system equations. In the present study, four Fourier terms for the
subharmonic mode and five Fourier terms for the fundamental mode are believed to be
sufficient for most of the practical problems.

Suction mechanism not only suppresses the occurrence of both the subharmonic and the
fundamental waves, but also shrinks the region of unstable spanwise wave numbers. The
maximum growth rates of both the subharmonic and the fundamental waves vary almost
linearly with the TS wave amplitude when suction is fixed. The spanwise wave number of the
maximum growth rate remains nearly constant as the suction is changed. Moreover, at high TS
wave amplitude, the spanwise wave numbers of the maximum growth rate of both the
subharmonic and the fundamental waves are very close. On the whole, the flows seem to be
vulnerable to the subharmonic mode that emerges as the principal mechanism of transition.

Figure 6. Neutral curves for the 2D TS wave in the F–R domain for four different suctions.
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Figure 7. The variation of spatial growth rate g against wave number B for different suction at F=90 � 10−6 and
Re=600.

Figure 8. The variation of spatial growth rate g against wave number B for different suction at F=90 � 10−6 and
Re=600.
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Figure 9. The variation of spatial growth rate g against wave number B for different suction at F=90 � 10−6 and
Re=600.

Figure 10. The variation of maximum spatial growth rate gmax against Arms for different V at F=90 � 10−6 and
Re=600.
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Figure 11. The variation of maximum spatial growth rate gmax against suction V for varied Arms at F=90 � 10−6 and
Re=600.

Figure 12. The variation of Brms of the maximum growth rate against V for Arms at F=90 � 10−6 and Re=600.
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The present work in analyzing the subharmonic and fundamental instabilities not only
provides a good initial guess for DNS, but also offers important information for the
verification of results of the DNS approach.

APPENDIX A. COEFFICIENTS FOR SUBHARMONIC MODE
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APPENDIX B. COEFFICIENTS FOR FUNDAMENTAL MODE
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G. 21=Re [(s− i2v)+Um(g+ i2a)]− (g+ i2a)2+b2, G. 23=
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APPENDIX C. ELEMENT OF MATRIX [B ]

At j=nmax, the coefficients of the governing equations become constants, so the eigenvalues
and the corresponding eigenfunctions are determined analytically. Therefore, the governing
equations with constant coefficients are
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The eigenvalues of the system of equations are

x1,2=9
C21, x3,4=9
C5+C6, x5,6=9
C5−C6.

where C5= (C24C42+C46C64+C21)/2 and C6=
[C5
2+C43(C35C64+C24C31)]. To obtain ele-

ments of the matrix [B ], the eigenfunctions of the system adjoining the original system need to
be determined first, and the three eigenfunctions corresponding to the negative eigenvalues are
used in the determination of elements of [B ]. They are

k� 1={k11, k12, k13, k14, k15, k16}T={1, −1/x2, 0, 0, −C24/C64, C24/x2C64}T,

k� 2={k21, k22, k23, k24, k25, k26}T

={(C21C42+C31C43)/f, − (C31C43+C42x4
2)/(x4f), −C43/x4, 1, −1(C46+x4k26)/C64,

− (C24k22+x4)/C64}T, f=x4
2−C21,
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k� 3={k31, k32, k33, k34, k35, k36}T

={(C21C42+C31C43)/f, − (C31C43+C42x6
2)/(x6f), −C43/x6, 1, −1(C46+x6k26)/C64,

− (C24k22+x4)/C64}T, f=x6
2−C21,

for

C21=Re
��

s−
iv
2
�

+Um

�
g+

ia
2
�n

−
�

g+
ia
2
�2

+b2, C24=Re
�

g+
ia
2
�

,

C31= −
�

g+
ia
2
�

, C35= −b, C42= −
�

g+
ia
2
�,

Re,

C43= −
��

s−
1
2

iv
�

+Um

�
g+

ia
2
�n

+
��

g+
ia
2
�2

−b2n,Re, C46= −b/Re,

C64= −bRe,

!Bn1,m1=kn,m
r

Bn2,m1=kn,m
i

Bn1,m2= −kn,m
i

Bn2,m2= −kn,m
r ,

! n1=2n−1,
m1=2m−1,

n2=2n,
m2=2m,

n=1, 3
m=1, 6

for

C. 21=Re [(s− i2v)+Um(g+ i2a)]−
�

g+
i3a

2
�2

+b2, C. 24=
�

g+
i3a

2
�

Re,

C. 31= −
�

g+
i3a

2
�

, C. 35= −b, C. 42= −
�

g+
i3a

2
�,

Re,

C. 43= − [(s− i2v)+Um(g+ i2a)]+
��

g+
i3a

2
�2

−b2n,Re, C. 46= −b/Re,

C. 64= −bRe,

!Bn1,m1=kn,m
r

Bn2,m1=kn,m
i

Bn1,m2= −kn,m
i

Bn2,m2= −kn,m
r ,

! n1=2n−1+6,
m1=2m−1+6,

n2=2n+6,
m2=2m+6,

n=1, 3.
m=1, 6.
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